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ABSTRACT  

Unmanned aerial systems (UAS) have gained popularity in precision agriculture research due to their relevant payloads, 
high spatial/spectral resolution, and ease of data acquisition. These systems come equipped with various imaging 
technologies to support crop monitoring and management. However, there remains a need to evaluate the performance of 
various imaging systems in the context of precision agriculture. Here we explore and compare the capabilities of 
multispectral (MSI), hyperspectral (HSI), and light detection and ranging (LiDAR) sensing systems to predict table beet 
root yield and estimate Cercospora Leaf Spot (CLS) disease severity. Our research was conducted at Cornell AgriTech in 
Geneva, NY, during the 2021 and 2022 growing seasons. Data were collected via a MicaSense five-band multispectral 
sensor, Headwall Nano hyperspectral sensor (272 bands; visible-near-infrared (VNIR) range), and Velodyne VLP-16 
LiDAR for structural information. These data were captured at various stages of the crop growth cycle. We developed 
end-of-season table beet root yield models (best performing model had an R²test = 0.82 and MAPEtest = 15.6%) by evaluating 
their performance using both individual sensor data and combinations of sensor data. CLS disease severity estimation 
models simultaneously were developed utilizing both multispectral and hyperspectral sensors, incorporating vegetation 
indices and texture metrics. Our findings highlight the respective strengths and limitations of each sensor system. While 
hyperspectral imagery provided marginal improvements in yield prediction, multispectral imagery offered comparable 
results with simpler data handling and higher spatial resolution. For disease severity estimation, multispectral imagery 
(R2test = 0.90 and RMSEtest = 7.18 %) outperformed hyperspectral data (R2test = 0.87 and RMSEtest = 10.1 %). Additionally, 
structure-from-motion (SfM)-derived structural metrics contributed more to yield estimation when compared to LiDAR 
data. This study builds upon our previous work on disease severity assessment and incorporates key findings from our 
ongoing yield estimation research. We ultimately demonstrated that reliable models for both yield prediction and disease 
severity estimation can be achieved using multispectral imagery alone, by providing a comprehensive comparison of 
sensor modalities. This highlights the practicality and cost-effectiveness of MSI for operational deployment. These insights 
support the informed selection of UAS imaging systems, contributing to optimized crop management, enhanced 
productivity, and sustainable agricultural practices. 
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1. INTRODUCTION  
The application of unmanned aerial systems (UAS) in precision agriculture has garnered significant research interest in 
recent years due to the ability of UAS to deliver high-resolution, timely data with minimal labor input1. While much of the 
existing UAS-based research has focused on grain crops2, there remains a notable gap in studies addressing specialty crops, 
such as table beets, which are gaining popularity owing to their nutritional benefits3 and increasing consumer demand4. 
The only relevant study for table beet root yield estimation using multispectral imagery was performed by Chancia et al.5, 
who achieved an R2 = 0.89, while our previous study6 using hyperspectral images achieved a top R2 = 0.90. Both of these 
studies relied heavily on spectral information, yet it has been shown that structural information, extracted from structure-
from-motion (SfM)7 or LiDAR8, could improve yield estimation. 

Concurrently, UAS-based disease severity assessments have gained traction, particularly for Cercospora Leaf Spot (CLS) 
in beet crops. Görlich et al. 9 employed UAS RGB imagery to segment CLS-affected regions in sugar beets, achieving an 
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F1 score of 44.48. Similarly, Yamati et al. 10 utilized UAS-based CNN models to classify disease severity levels, reporting 
an accuracy of 0.64. Barreto et al. 11, in turn, demonstrated that multispectral imagery can predict CLS severity with an R² 
of 0.87. Our prior research also highlighted the efficacy of multispectral imagery in estimating CLS severity in table beets, 
incorporating both spectral and textural features12. However, these studies largely emphasized single-sensor systems and 
did not extend their analysis to multiple sensing modalities. 

Despite the demonstrated success of UAS-based sensing in estimating both yield and disease severity, a comprehensive 
evaluation of how various UAS sensor systems, specifically multispectral, hyperspectral, and LiDAR, compare across 
different agricultural variables within the same crop, is lacking. Furthermore, there is limited exploration of how these 
systems perform when applied to both disease severity assessment and yield estimation in tandem. 

We address this gap by systematically comparing the performance of multispectral (MSI), hyperspectral (HSI), and LiDAR 
data for two key applications in table beet production, namely harvest root yield prediction and CLS disease severity 
estimation. Specifically, for yield estimation, we integrate results from our recent multi-season trials, incorporating 
spectral, structural, and meteorological data, and evaluate sensor performance across growing stages. While detailed 
methodology for root yield prediction will be presented in a forthcoming publication, this paper focuses on the comparative 
sensor performance results. Additionally, for disease severity assessment, we extend our prior work by developing new 
models using hyperspectral imagery, following a consistent feature extraction and modeling pipeline, as previously applied 
to multispectral data12. Our objective is to provide a holistic evaluation of sensor capabilities for precision agriculture 
applications in table beet, offering insights into optimal sensor selection for specific crop monitoring tasks. 

2. METHODS 
Field Trials 

The table beet field trials were conducted at the Cornell AgriTech farm in Geneva, NY, during the 2021 and 2022 growing 
seasons. Specific plots within the same field were designated for distinct purposes: some for end-of-season beet root yield 
estimation, and others for Cercospora Leaf Spot (CLS) disease severity assessment. CLS severity evaluations were 
performed at five intervals throughout the growing season to capture disease progression. Detailed information on the 
disease assessment protocol is available in Saif et al. 12.  

Unmanned Aerial System 

A DJI Matrice 600 drone, equipped with different sensors, were used for this study. Here we focus specifically on the 
MSI, HSI, and LiDAR data (Table 1). 

 

 
Table 1. Sensor configurations of the three different imaging systems used in the study. 

 Multispectral Hyperspectral LiDAR 

Sensor MicaSense Rededge-M Headwall Nano Velodyne VLP 16 

Number of spectral bands 5 272 1 

Wavelength (nm) 475, 560, 668, 717, 840 400 – 1000 905 

Flight Configuration 

Flight altitude (m) 15 45 15 

Orthomosaic GSD (cm) 1 3 1 (CHM) 

 

Harvest yield prediction 

A series of Gaussian Process Regression (GPR)13 models were developed to estimate table beet root yield using a 
combination of meteorological, spectral, and structural features. Spectral features were extracted from the five-band 
multispectral imagery, while structural features, specifically canopy volume estimates, were derived using SfM techniques 
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applied to the same multispectral dataset. Similarly, hyperspectral imagery provided high-dimensional spectral 
information, which was reduced via principal component analysis (PCA) to retain the most informative components, while 
structural metrics (canopy volume estimates) were obtained from LiDAR-derived canopy height models. 

Three independent models were trained: (1) a model combining multispectral spectral features with SfM-derived structural 
data, (2) a model integrating hyperspectral spectral features with LiDAR structural information, and (3) cross-combination 
models with one incorporating hyperspectral spectral data with multispectral SfM structural features, and another utilizing 
multispectral spectral data alongside LiDAR-derived structural features. In all models, meteorological variables, such as 
growing degree days (GDD) 14, GDD at harvest (GDDharvest), cumulative evapotranspiration (EVAP) 15, and EVAP at 
harvest (EVAPharvest) were included to account for environmental conditions. 

This framework facilitated a comparative evaluation of the predictive contributions of each sensor modality, both 
individually and in combination, highlighting their respective strengths in yield estimation. Specific spectral features from 
the multispectral imagery included the mean of green normalized difference vegetation index (GNDVI)16, transformed 
chlorophyll absorption ratio index (TCARI)17, and the green reflectance band.  The first three principal components were 
utilized in the case of the hyperspectral data. A detailed description of the data preprocessing steps, feature extraction 
procedures, and model optimization techniques will be presented in a forthcoming publication, currently under preparation. 

CLS Disease Severity Estimation 

Spectral features, including various vegetation indices, and spatial features derived from texture metrics18, were extracted 
from the imagery to capture canopy characteristics related to disease. We employed a two-stage feature selection pipeline, 
combining filter-based methods to reduce dimensionality and wrapper-based methods to refine feature subsets relevant to 
model performance, to optimize model inputs. These selected features subsequently were used to train machine learning 
models, specifically random forest regressors, with model outputs validated against expert-assessed field CLS severity 
(%).  

In our earlier work12 we detailed this process for multispectral imagery, where the renormalized difference vegetation 
index (RDVI)19, skewness, and the near-infrared texture homogeneity coefficient of variation emerged as key features. In 
this study we applied the same methodology to the hyperspectral imagery to enable direct comparison between sensor 
modalities. For hyperspectral data, the algorithm identified the modified chlorophyll absorption ratio index-2 (MCARI2)20 
skewness, the 721 nm texture homogeneity coefficient of variation, 741 nm texture homogeneity kurtosis, and 761 nm 
texture dissimilarity skewness as the most informative features for disease severity estimation. 

3. RESULTS 
The scatter plots illustrating the model predictions versus actual root yield for test data set across various sensor 
combinations are shown in Figure 1 , while Table 2 shows the corresponding performance metrics summarized for each 
sensor combination. All sensor combinations were able to predict root yield at harvest across a wide range of values.  

However, a closer examination of the numerical results highlights the subtle difference in model performance. Specifically, 
the combination of hyperspectral with SfM-derived canopy volume estimates exhibits the highest predictive accuracy, 
reflected in slightly better R2 and RMSE values when compared to the other models. This suggests that hyperspectral and 
SfM-derived features provide marginal improvement to its multispectral and LiDAR counterpart with regards to harvest 
root yield estimation. 

 

Proc. of SPIE Vol. 13455  1345509-3



 
 

 
 

  

(a) (b) 

  

(c) (d) 
Figure 1. Predicted versus actual table beet root yield (kg/m²) for various sensor combinations across the 2021 and 2022 
seasons. (a) Multispectral imagery with structure-from-motion (SfM)-derived structural features, (b) Hyperspectral imagery 
combined with LiDAR structural features, (c) Multispectral imagery combined with LiDAR structural features, and (d) 
Hyperspectral imagery with SfM-derived structural features. The red dashed line represents the 1:1 line, indicating perfect 
agreement between predicted and actual yields. 

Table 2. Table beet root yield estimation performance for various sensor combinations. 

 Multispectral + 
SfM 

Hyperspectral + 
LiDAR 

Multispectral + 
LiDAR 

Hyperspectral + 
SfM 

R2Train / RMSETrain 
(kg/m2) 0.88 / 0.46 0.82 / 0.55 0.81 / 0.57 0.88 / 0.46 

R2Test  / RMSETest 

(kg/m2) 0.81 / 0.58 0.79 / 0.61 0.79 / 0.60 0.82 / 0.56 
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Similarly, Figure 2 shows the relationship between the best model performance of CLS disease severity using multispectral 
and hyperspectral systems, while Table 3 shows the performance for each system. Again, both systems were able to predict 
DS with reasonable accuracy; however, the multispectral system in this scenario exhibited better accuracy, while the 
hyperspectral system showed an inclination to saturate especially at high disease severity. 

  

(a) (b) 
Figure 2. Predicted versus actual Cercospora leaf spot severity (DS) (%) for table beet using (a) multispectral imagery and 
(b) hyperspectral imagery. The red dashed line represents the 1:1 line indicating perfect agreement between predicted and 
actual disease severity scores. 

Table 3. Performance for Cercospora leaf spot severity estimation using the multispectral and hyperspectral sensors. 

 Multispectral Hyperspectral 
R2Train / RMSETrain (%) 0.94 / 6.02 0.95 / 5.07 

R2Test  / RMSETest (%) 0.90 / 7.18 0.87 / 10.1 

 

4. DISCUSSION 
The performance of our models for both harvest root yield prediction and CLS disease severity estimation align well with 
other studies in literature. Our yield prediction models demonstrated R² values comparable to, or exceeding, those reported 
in previous work. Similarly, while the hyperspectral-based model exhibited slightly poorer performance for disease 
severity estimation compared to multispectral imagery, it still outperformed many techniques documented in literature. 

A key focus of this study was comparing sensor modalities to assess their strengths and limitations for specific agricultural 
applications. To provide additional context, we evaluated the signal-to-noise ratio (SNR) characteristics of both 
multispectral and hyperspectral systems (Figure 3). The analysis offers insight into how sensor-specific factors influenced 
model outcomes. 
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Figure 3. Scene noise estimation based on the signal-to-noise ratio (SNR) calculated from calibration panels. SNR was 
computed by dividing the mean reflectance value by the standard deviation of the reflectance values across all pixels within 
each panel. The plot compares SNR across wavelengths for both hyperspectral (blue line) and multispectral (green dots) 
sensors, illustrating the spectral noise characteristics of each system. 

 
For root yield prediction, both multispectral and hyperspectral sensors yielded similar performance, with hyperspectral 
sensors showing a slight advantage. This is likely because yield estimation relied on the aggregate mean reflectance values 
across the scene and the broad spectral information was reduced via principal component analysis (PCA). In this scenario, 
neither the lower spatial resolution nor the lower SNR (particularly in the near-infrared region) of hyperspectral imagery 
significantly impacted model accuracy. The spatial resolution was less critical, as the model leveraged averaged canopy 
and structural metrics, rather than fine spatial details. 

Conversely, for CLS disease severity estimation, the choice of sensor played a more decisive role. Disease estimation 
depended heavily on distribution-based metrics, such as vegetation index (VI) variability and texture features, both of 
which are sensitive to spatial resolution and image noise. The higher spatial resolution of multispectral imagery provided 
finer detail, enabling better capture of subtle variations in canopy health and disease lesion distribution. In contrast, the 
hyperspectral system's lower spatial resolution, coupled with its lower SNR in the NIR region, likely contributed to reduced 
performance. Moreover, hyperspectral data collection with push broom sensors posed additional challenges; 
orthorectification is more complex compared to frame-based scanners, while residual line jitter can introduce slight 
misregistration errors. These imperfections further complicated accurate texture and distribution feature extraction, 
particularly for higher disease severity levels where fine-scale discrimination is essential. The observed tendency of the 
hyperspectral model to saturate at high disease severity levels may also stem from these limitations. One potential 
mitigation strategy could involve stabilizing the hyperspectral sensor with a gimbal to minimize jitter effects. 

On the structural side, our results indicate that SfM-derived canopy volume estimates contributed more effectively to yield 
prediction than LiDAR-based metrics. As shown in Figure 4, SfM consistently produced higher volume estimates when 
compared to LiDAR. This is likely due to LiDAR’s enhanced penetrating capability when generating point clouds, leading 
to lower canopy volume estimation. 
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Figure 4. Histogram comparison of canopy volume estimates derived from structure-from-motion (SfM) and LiDAR data. 
The blue bars represent the volume distribution obtained from SfM-derived models, while the orange bars correspond to 
LiDAR-derived volumes. Smoothed kernel density estimation curves are overlaid to illustrate the distribution trends for 
each sensor modality, highlighting differences in volume estimation between the two methods. 

5. CONCLUSION 
This study presented a comprehensive evaluation of multiple UAS sensor modalities for two applications in table beet 
production: harvest root yield prediction and CLS disease severity estimation. Our results demonstrated that both 
multispectral and hyperspectral imagery, when combined with appropriate structural and meteorological features, achieved 
robust yield predictions across multiple seasons and growth stages. Hyperspectral imagery provided a marginal advantage 
in yield estimation due to its broader spectral coverage; however, the multispectral system delivered comparable 
performance, highlighting its practical utility given its operational simplicity. 

For disease severity assessment, multispectral imagery outperformed hyperspectral data, primarily due to its superior 
spatial resolution and lower noise levels, which facilitated more accurate extraction of the distributions of vegetation 
indices and texture metrics. The hyperspectral system’s lower spatial resolution and signal-to-noise ratio, coupled with 
inherent challenges in orthorectification, limited its effectiveness in capturing features critical for disease estimation. 
Additionally, our findings emphasized that structure-from-motion (SfM)-derived canopy volume estimates contributed 
more effectively to yield prediction than LiDAR-derived structural features.  

Overall, this study provides valuable insights into the relative advantages and limitations of different UAS sensors for 
multi-parameter crop monitoring. Our comparative analysis offers practical guidance to researchers and practitioners 
aiming to optimize sensor deployment strategies in precision agriculture. 
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