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Introduction
• Motivation: Unmanned Aerial Systems (UAS) equipped with multispectral, 

hyperspectral, and LiDAR sensors offer promising tools for non-invasive crop 
monitoring—but their comparative effectiveness across different agricultural 
tasks remains underexplored.

• Gap: Most existing studies focus on single sensor modalities or isolated crop 
parameters. There is a need to evaluate sensor performance across multiple 
tasks, such as root yield prediction and disease severity estimation, particularly 
for specialty crops like table beets.

• Objective: This study compares the performance of multispectral, 
hyperspectral, and LiDAR sensors in predicting harvest table beet root yield and 
Cercospora Leaf Spot (CLS) disease severity, aiming to identify the most 
practical and effective sensing strategies for precision agriculture.
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Study location: Geneva, New York, 
USA, at Cornell AgriTech.
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• Yield Prediction: Hyperspectral 
performed slightly better than 
multispectral; spatial resolution 
and SNR had minimal impact.

• Disease Estimation: Multispectral 
performed better due to better 
spatial resolution and NIR SNR.
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R2
Train / RMSETrain 

(kg/m2) 0.88 / 0.46 0.82 / 0.55 0.81 / 0.57 0.88 / 0.46

R2
Test  / RMSETest 

(kg/m2) 0.81 / 0.58 0.79 / 0.61 0.79 / 0.60 0.82 / 0.56

Multispectral Hyperspectral
R2

Train / RMSETrain (%) 0.94 / 6.02 0.95 / 5.07

R2
Test  / RMSETest (%) 0.90 / 7.18 0.87 / 10.1

Disease Severity Estimation

SfM-derived canopy volume 
outperformed LiDAR-based volume 
estimates. This was primarily attributed 
to LiDAR’s penetration, leading to 
underestimation in dense, low-stature 
beet canopies.

Conclusion
Multispectral imagery performed well for both yield and disease 

estimation. Hyperspectral slightly improved yield prediction, but struggled 
with disease mapping. SfM outperformed LiDAR for structural features. 
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