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Background

• Cercospora leaf spot (CLS) is a foliar fugal disease 

common in beet plants. 

• CLS causes reddish brown spots of size 2-5 mm on 

foliage.

• Spots spread and grow, eventually leading to 
defoliation.

• Early onset leading to significant yield losses.

• Associated defoliation poses a challenge for mechanical 

harvesters.
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Disease Severity

• Disease severity (DS) is a metric that is 

used to quantify CLS in table beets, i.e., 

the percentage of leaf area covered by the 
lesions.

• Several leaves are sampled and visually 
scored to assess an entire plot.

• The same observer must score DS each 

season to ensure consistency.
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Objective

Assess Cercospora leaf spot 

(CLS) disease severity in table 

beets using unmanned aerial 

systems (UAS).

4



5

Data Collection
• Study area: Geneva, New York, 

USA, at Cornell AgriTech.

• 2021 & 2022 flights: DJI 

Matrice-600 with a MicaSense

RedEdge-M camera capturing 
five-band multispectral images 

(475, 560, 668, 717, & 840 nm).

• 2023 Flight: DJI Mavic 3M was 

used to capture four-

band multispectral images (560, 
650, 730, & 860 nm)

• Dimension of plot: 10ft x 2, 

each plot demarcated by flags
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Timeline for Data Collection

• Five flight campaigns were 

performed each season, resulting a 

total of 15 flights across three 
seasons.

• For 2021 and 2022 there were 40 

plots each year.

• For 2023 there were 56 plots.

• Total data points = 40x5 + 40x5 + 

56x5 = 680
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Note: Data Alignment
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• Visual disease assessment did 

not always align with flight date.

• We thus used a 2nd order linear 

interpolation to approximate the 
disease severity on the day of the 

flight.



Processing Flow Chart
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• MSAVI2 > 0.25 is used to extract 

beet vegetation canopy.

• Reflectance maps consists of 4 

bands (green, red, red-edge, 
NIR).

• 6 descriptive statistics are 

extracted from each maps for 

each bands.



Vegetation Indices
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Abbreviation Name Formula Ref

RDVI
Renormalized Difference 

Vegetation Index

𝑅𝑁𝐼𝑅 − 𝑅𝑅𝑒𝑑

𝑅𝑁𝐼𝑅 + 𝑅𝑅𝑒𝑑

Steddom
et al., 
(2005) 

NGRDVI
Normalized Green-Red difference 

vegetation index

𝑅𝐺𝑟𝑒𝑒𝑛 − 𝑅𝑅𝑒𝑑
𝑅𝐺𝑟𝑒𝑒𝑛 + 𝑅𝑅𝑒𝑑

Jay et al., 
(2020)

HI Health Index
𝑅534 − 𝑅698
𝑅534 + 𝑅698

− 0.5𝑅704
Mahlein

et al. 
(2013) CLSI Cercospora Leaf Spot Index

𝑅698 − 𝑅570
𝑅698 + 𝑅570

− 𝑅734

MCARI2
MCARI (variant with reduced soil 

contamination)

1.5[2.5 𝑅800 − 𝑅670 − 1.3 𝑅800 − 𝑅550 ]

2𝑅800 + 1 2 − 6𝑅800 − 5 𝑅670 − 0.5

Barreto  
et al. 

(2023) 

MSAVI2
Modified Soil-adjusted Vegetation 

Index (variant)

2𝑅𝑁𝐼𝑅 + 1 − (2𝑅𝑁𝐼𝑅 + 1)2−8 𝑅𝑁𝐼𝑅 − 𝑅𝑅𝑒𝑑
2

GVI Green Vegetation Index
−0.283𝑅𝐺𝑟𝑒𝑒𝑛 − 0.660𝑅𝑅𝑒𝑑 + 0.577𝑅𝑅𝑒𝑑𝐸𝑑𝑔𝑒
+ 0.388𝑅𝑁𝐼𝑅

MCARIOSAVI

Modified chlorophyll absorption 
ratio/ Optized soil adjusted 

vegetation indices

𝑅700 −𝑅670 −0.2 𝑅700 −𝑅550 (𝑅840 +𝑅670 + 0.16)

1.16 𝑅840 −𝑅670 𝑅700/𝑅670
,

• VI a placeholder for 

vegetation health

• VIs chosen based on 

past studies



Texture Features
▪ Proxy for a pixel-spatial relationship.

▪ Spatial variation of pixels could 

provide information about the 

frequency of CLS presence in a plot.

▪ Find gray level co-occurrence Matrix 

(GLCM) (Haralick et al., 1973).

▪ Extract each texture feature using 

descriptive statistics of GLCM.

▪ A single four band image generates 

4x8 = 32 feature maps
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No. Texture Features Formula

1 Mean (mean) ෍
𝑖=1

𝑁𝑔

෍
𝑗=1

𝑁𝑔

𝑖 ∗ 𝑃 𝑖, 𝑗

2 Variance (var) ෍
𝑖=1

𝑁𝑔

෍
𝑗=1

𝑁𝑔

(𝑖 −𝑀𝐸)2∗ 𝑃 𝑖, 𝑗

3 Contrast (cont) ෍
𝑖=1

𝑁𝑔

෍
𝑗=1

𝑁𝑔

(𝑖 − 𝑗)2∗ 𝑃 𝑖, 𝑗

4 Dissimilarity (dis) ෍
𝑖=1

𝑁𝑔

෍
𝑗=1

𝑁𝑔

|𝑖 − 𝑗| ∗ 𝑃 𝑖, 𝑗

5 Homogenity (homo) ෍
𝑖=1

𝑁𝑔

෍
𝑗=1

𝑁𝑔

𝑖 ∗
𝑃 𝑖, 𝑗

1 + (𝑖 − 𝑗)2

6 Entropy (ent) −෍
𝑖=1

𝑁𝑔

෍
𝑗=1

𝑁𝑔

𝑃 𝑖, 𝑗 ∗ ln𝑃 𝑖, 𝑗

7
Angular Second 

Moment (asm)
෍
𝑖=1

𝑁𝑔

෍
𝑗=1

𝑁𝑔

𝑃 𝑖, 𝑗 2

8 Correlation

σ
𝑖=1

𝑁𝑔 σ
𝑗=1

𝑁𝑔 𝑖𝑗𝑃 𝑖, 𝑗 − 𝜇𝑥𝜇𝑦

𝜎𝑥𝜎𝑦

Where 𝜇𝑥, 𝜇𝑦, 𝜎𝑥and 𝜎𝑦are the means and 

standard deviations of 𝑝𝑥 and 𝑝𝑦

𝑝𝑥(𝑖) = σ
𝑗=1

𝑁𝑔 𝑃 𝑖, 𝑗 and 𝑝𝑦(𝑗) = σ
𝑖=1

𝑁𝑔 𝑃 𝑖, 𝑗



Feature Extraction
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• Calculate mean, coefficient of variation, first quartile, third quartile, 

skewness and kurtosis from each feature maps.

• Total number of features: 

o 8 VIs x 6 statistics + 4 bands x 6 statistics + 4 bands x 8 texture 

features x 6 statistics = 264



Model Development
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Best-performing Results
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Models Hyperparameters
No. of 

features

Features used

R2
train/ 

RMSE 

train (%)

R2 
val / 

RMSE val

(%)

R2 
test / 

RMSE test

(%)

RF

n_estimators: 100,

max_depth: 8,

min_samples_split: 3, 

min_samples_leaf: 2

2 rdvi_skewness, tex_homo_cv_4

0.89 / 

6.92

0.87 / 

8.09

0.82 / 

9.31

XGB

n_estimators: 50,

learning_rate: 0.1,

max_depth: 3

7

rdvi_skewness, ref_q3_3, tex_cont_cv_2,

tex_cont_q3_4, tex_homo_cv_4,

tex_homo_kurtosis_4, tex_mean_q3_1

0.93 / 

5.82

0.89 / 

7.61

0.81 / 

9.65

SVR

kernel: rbf, 

C: 1, 

epsilon: 0.001

8

gvi_kurtosis, ref_skewness_3,

ref_skewness_4, tex_cont_q1_4,

tex_homo_cv_3, tex_homo_skewness_4,

tex_mean_cv_4, tex_var_kurtosis_4

0.88 / 

7.50

0.81 / 

9.90

0.78 / 

10.27

PLSR n_components: 5 5

gvi_kurtosis, ref_skewness_3,

ref_skewness_4, tex_homo_cv_3,

tex_mean_mean_4

0.76 / 

10.33

0.83 / 

9.36

0.79 / 

10.17

Random forest 

model exhibited 

the best result with 
the least number 

of features.



Model Performance and Feature Analysis
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CLS Maps: Examples of Field-level CLS
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Conclusions
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• Our work demonstrates the feasibility of utilizing multiple UAS systems 

for estimating CLS disease severity.

• We achieved comparable accuracy to contemporary literature at a 

relatively low resolution (~1 cm).

• RDVI skewness (red and NIR band) and texture homogeneity 

coefficient of variation of NIR band are important indices for 

determining CLS.
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