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Old Macdonald had a farm ……….
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……. And on that farm he grows beets.

Sponsored by:

• USDA-NASS:United States Department of Agriculture National Agriculture Statistics Service. 2016. Available 
online: https://quickstats.nass.usda.gov/results/27FA1853-448A-39A7-9CF4-E457154D6482

• Sokolova, Diana V., et al. "Characterization of Betalain Content and Antioxidant Activity Variation Dynamics in 
Table Beets (Beta vulgaris L.) with Differently Colored Roots." Agronomy 14.5 (2024): 999.

• In 2024, approximately 9,700 acres of table beets were harvested in US, generating 

an estimated value of $86 million (USDA-NASS).

• Table beets are growing in demand due to known health benefits (Sokolova et al., 2024).

• Driving the need for more efficient farming practices.



Old Macdonald buys a drone ……..

• UAS enables non-invasive, high-throughput data collection.

• Provides spatially explicit insights for precision agriculture.

• Supports decisions like logistic planning and targeted intervention.
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UAS Research

• Limited research focused on table beets and comparative evaluation of sensor

modalities for agricultural monitoring
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* Wang, Jingzhe, et al. "UAS-based remote sensing for  agricu ltural Monitor ing: 

Current status and perspectives." Computers and Electronics in  Agricu lture 227 

(2024): 109501.
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* Khanal, Sami, et al. "Remote sensing in agriculture—accomplishments, limitat ions, 
and opportunit ies." Remote sensing 12.22 (2020): 3783.

Beets? 

Sensors?

We got 

this.



Objectives

• Assess the feasibility of using narrowband spectroscopy for table beet yield 
prediction.

• Develop and compare robust harvest yield prediction models using UAS data 
across multiple sensor configurations.

• Evaluate Cercospora leaf spot (CLS) disease severity and compare the 
performance of multispectral and hyperspectral sensors.
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Plant HarvestUAS Flight



Outline
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• Data collection

• Spectral band selection for yield prediction

• Robust yield prediction model

• CLS disease severity estimation

• Conclusions and key takeaways



Data collection
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Unmanned Aerial Systems (UAS)
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Image credit: Jan 
van Aardt

DJI Matrice 600



UAS Flight and Image Acquisition

• UAS flown in lawnmower pattern to 

ensure complete field coverage.

• Geometric and radiometric 
corrections applied to generate 

ortho-mosaic imagery.
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Field data collection
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Field view of the beet plots under study Ortho-mosaic of the entire beet plot. The yellow 

rectangles are the plots under study.

• Conducted  several flights over Cornell Agritech field 

in Geneva, NY, during 2021 and 2022 seasons.

• Dimensions of the plots are 5ft x 1 ft.

• Table beetroot weight measured at harvest only.

• CLS disease severity assessed by plant pathologists.



Outline
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Research question

Which specific narrow spectral bands are most predictive of harvest root yield in 

table beets?
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Timeline

Beet cartoons from:https://depositphotos.com

• Flights conducted at different times during a growing season.

• Estimate the end of season root yield (weight of beet root).



Feature extraction
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Mean 

Reflectance

Mean 

Texture

• Extracted mean 

reflectance features 

across spectral bands.

• Computed mean texture 
metrics based on gray-

level co-occurrence 

matrices (Haralick et al., 1973).

• Mean texture reflects 
average co-occurring pixel 

intensity, indicating spatial 

brightness trends in a 

band.

* Haralick,  Robert M. , Karthikeyan Shanm ugam,  and Its' Hak Dinstein.  "Textural features for image classif ication. " IEEE Transact ions on systems,  m an, and cybernet ics 6 (2007): 610 -621.



Predictor variable extraction
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λ1λ2

R1

R2

• Computed normalized difference 

indices across all wavelength pairs

• Applied to both spectral reflectance 

and texture-based features

• Defined as NDRI for reflectance and 

NDTI for texture metrics



Evaluating predictive power of wavelength combinations
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NDRI

NDTI

Computed R2 values for each wavelength pair using linear models



Model performance across flights
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Applied stepwise multivariate linear regression using top 10 NDRI and NDTI predictors 

to model harvest root yield.

R2= 0.85

RMSE = 12.93%

R2= 0.85

RMSE = 12.93%

R2= 0.87

RMSE = 11.85%

R2= 0.88

RMSE = 11.80%

R2= 0.90

RMSE = 10.81%

['d [895.0, 722.6]', 't 

[797.0, 781.4]', 't [908.3, 

823.7]', 't[805.9, 779.2]']

['d [899.4, 897.2]', 't 

[505.4, 496.5]', 't [687.9, 

656.8]', 't [901.6, 897.2]']

['d [618.9, 463.1]', 'd 

[886.1, 790.3]', 't [817.1, 

785.9]']

['t [643.4, 639.0]', 't 

[848.2, 765.9]', 'd [895.0, 

783.7]']

['d [892.7, 814.8]', 't 

[505.4, 496.5]', 'd [912.8, 

770.3]']



Transferring to new seasons
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NDRI

NDTI



Conclusion

• Identified key wavelength features associated with different growth 

stages.

• However, these indices show limited transferability within and across 

seasons.

• NDRI features demonstrate consistent patterns across narrowband 

wavelengths and growth stages, whereas NDTI features exhibit poor 

cross-stage and cross-season generalization.
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Outline
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Research gap for practical yield modeling

• Lack of robust models: Most existing yield models are tailored to specific 

growth stages or seasons, limiting their real-world usability. A unified, flexible 

model is essential for operational deployment.

• Unclear sensor guidance: There is limited comparative analysis on sensor 
performance, making it difficult to determine the optimal sensor for yield 

prediction.
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Plant Varying harvest timingVarying flight dates



Objective

• Develop a robust yield prediction model for table beets using UAS-derived 

multispectral, hyperspectral, and LiDAR data.

• Evaluate model performance across multiple growth stages and growing 

seasons to ensure generalizability.

• Compare and contrast the predictive capabilities of different sensor modalities.
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Features for root yield modeling
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Meteorological 

features

Structural 

Features
Spectral Features

Root yield 

model

Weather station Velodyne 

VLP-16

Micasense

rededge-M

Headwall Nano 

Hyperspec



Meteorological features 

• Growing degree days (GDD) is widely 

used strategy to track growth stages in 

crops (Maimaitijiang et al., 2020).

• 𝐺𝐷𝐷 =
𝑇𝑚𝑎𝑥+𝑇𝑚𝑖𝑛

2
− 𝑇𝑏𝑎𝑠𝑒

• Evapotranspiration has been shown to 

be directly proportional to yield (Cheng et 

al., 2022). 

• Accumulated pan evaporation data was 
used as model feature.
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• Maimaitijiang, Maitiniyazi, et al. "Soybean yield prediction from UAV using multimodal data fusion and 
deep learning." Remote sensing of environment 237 (2020): 111599.

• Cheng, Minghan, et al. "Combining multi-indicators with machine-learning algorithms for maize yield early 
prediction at the county-level in China." Agricultural and Forest Meteorology 323 (2022): 109057.



Structural features
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905 nm laser 

pulse

LiDARMSI

Add height to 

estimate 
canopy 
volume

Point clouds

Canopy height 

model (CHM)



Spectral features
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Vegetation 

extraction

RDVI + Otsu 

thresholding

TCARI,

GNDVI, and 
Green

Mean

First 3 

principal 
component 

bands

MSI

HSI

Explains 99% variance

Mutual information (MI) above 

75th percentile with root yield 

while having inter feature 

below 0.8

Name Formula

Green normalized difference 

vegetation index (GNDVI)

𝑅800 − 𝑅570

𝑅800 + 𝑅570

Transformed chlorophyll 

absorption ratio index (TCARI)
3 × [(𝑅700 − 𝑅670) − 0.2 × (𝑅700 − 𝑅550)(𝑅700/𝑅670)]

Mean green reflectance 𝑅550



Yield modeling
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One model to 
rule them all

Yield at 

harvest

Cumulative
GDD and EVAP

Cumulative 
GDD and EVAP 

at harvest

Structural + 
spectral data 

from UAS

Plant HarvestUAS Flight
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Gaussian Process Regression
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Source: https://gist.github.com/ilanman/312d0489763b9c19164a

● Non-parametric Bayesian regression model

● Assumes data follows a joint multivariate Gaussian 
distribution

● Begins with a prior over functions and updates to a 
posterior using observed data

● Why use GPR?

● Provides predictive uncertainty for each estimate

● Data-efficient: leverages covariance structure for 

generalization



Model Performances across sensors
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𝑹𝟐𝑻𝒆𝒔𝒕 = 𝟎.𝟖𝟏

𝑴𝑨𝑷𝑬𝑻𝒆𝒔𝒕 = 𝟏𝟓. 𝟕%

𝑹𝟐𝑻𝒆𝒔𝒕 = 𝟎.𝟕𝟗

𝑴𝑨𝑷𝑬𝑻𝒆𝒔𝒕 = 𝟏𝟔. 𝟎%

𝑹𝟐𝑻𝒆𝒔𝒕 = 𝟎.𝟕𝟗

. 𝑴𝑨𝑷𝑬𝑻𝒆𝒔𝒕= 𝟏𝟖. 𝟎%

𝑹𝟐𝑻𝒆𝒔𝒕 = 𝟎.𝟖𝟐

𝑴𝑨𝑷𝑬𝑻𝒆𝒔𝒕 = 𝟏𝟕. 𝟒%
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Performance across flight timing

• Consistent model performance across multiple flight dates.

• Highest accuracy observed during the late Rosette and early 

harvest stage (55–75 DAP).

• Lower performance in early 2021 linked to LiDAR's limited 

accuracy in estimating canopy volume.

33

Why does 
the model 

work



Feature contributions
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Multispectral Hyperspectral + LiDAR

• SHAP analysis calculates the marginal contribution of each feature in the model.

• Canopy volume is the most influential predictor in both models



Relationship between canopy volume and root weight
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Conclusion

• Harvest root yield of table beets was successfully estimated across two 

seasons using UAS data.

• Multispectral model achieved an overall R2 = 0.81, MAPE = 15.7%

• Hyperspectral + LiDAR model achieved R2 = 0.79, MAPE = 17.4%

• Model performance was consistent across time, with peak accuracy observed 

during the late Rosette to early harvest ready growth stage.

• Canopy volume and meteorological variables were the most influential 
predictors of yield.

36



Outline
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CLS Disease severity estimation

• Cercospora leaf spot (CLS) is a foliar fugal disease prevalent in beet plants.

• Defoliation from CLS hampers mechanical harvesting and reduces yield.

• Disease severity—defined as the proportion of leaf area affected—is typically 

assessed through manual field surveys.

38

Reddish brown spots of 2-5 mm Necrosis Defoliation



Research Gap

• Most existing studies use high spatial 

resolution (~1 mm GSD), which often leads 

to underestimation of CLS severity due to 
missed sub-canopy symptoms (Barreto et al., 

2023; Görlich et al., 2021; Rangarajan et al., 2022; Yamati et al., 

2022). 

• Limited exploration of hyperspectral 
imaging systems for disease severity 

assessment in beet crops.
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Objective

• Assess Cercospora leaf spot (CLS) severity in table beets using UAS-based 

multispectral and hyperspectral imagery at operational (1–3 cm) spatial 

resolution.

• Compare and contrast the performance of multispectral and hyperspectral 
systems for disease severity estimation.

• Identify key features driving CLS prediction across sensor types.
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Timeline for Data Collection

• Five flight campaigns were 

performed each season, resulting a 

total of 10 flights across two 
seasons.

• For 2021 and 2022 there were 40 

plots each year.
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Processing Flow Chart
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Disease 

Severity

Plot

MSI / HSI

Vegetation 

Extraction

Texture 

Feature 

maps

Reflectance 

maps
VI maps

Descriptive Statistics

Feature 
selection + 

Model fitting

• Texture represents the spatial 

tonal variation for each band. It is 

derived from the Gray Level Co-
occurance matrix (Haralick et al., 1973).

• Six descriptive statistics are 

extracted from each map for 

each band.
• Mean

• Coefficient of variation

• First quartile

• Third quartile

• Skewness

• Kurtosis



Texture Features

• Spatial variation of pixels could 

provide information about the 

frequency of CLS presence in a plot.

• Extract each texture feature using 

descriptive statistics of GLCM.

• A single four band image generates 

4x8 = 32 feature maps.
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No. Texture Features Formula

1 Mean (mean) ෍
𝑖=1

𝑁𝑔

෍
𝑗=1

𝑁𝑔

𝑖 ∗ 𝑃 𝑖, 𝑗

2 Variance (var) ෍
𝑖=1

𝑁𝑔

෍
𝑗=1

𝑁𝑔

(𝑖 −𝑀𝐸)2∗ 𝑃 𝑖, 𝑗

3 Contrast (cont) ෍
𝑖=1

𝑁𝑔

෍
𝑗=1

𝑁𝑔

(𝑖 − 𝑗)2∗ 𝑃 𝑖, 𝑗

4 Dissimilarity (dis) ෍
𝑖=1

𝑁𝑔

෍
𝑗=1

𝑁𝑔

|𝑖 − 𝑗| ∗ 𝑃 𝑖, 𝑗

5 Homogenity (homo) ෍
𝑖=1

𝑁𝑔

෍
𝑗=1

𝑁𝑔

𝑖 ∗
𝑃 𝑖, 𝑗

1 + (𝑖 − 𝑗)2

6 Entropy (ent) −෍
𝑖=1

𝑁𝑔

෍
𝑗=1

𝑁𝑔

𝑃 𝑖, 𝑗 ∗ ln𝑃 𝑖, 𝑗

7
Angular Second 

Moment (asm)
෍
𝑖=1

𝑁𝑔

෍
𝑗=1

𝑁𝑔

𝑃 𝑖, 𝑗 2

8 Correlation

σ
𝑖=1

𝑁𝑔 σ
𝑗=1

𝑁𝑔 𝑖𝑗𝑃 𝑖, 𝑗 − 𝜇𝑥𝜇𝑦

𝜎𝑥𝜎𝑦

Where 𝜇𝑥, 𝜇𝑦, 𝜎𝑥and 𝜎𝑦are the means 

and standard deviations of 𝑝𝑥 and 𝑝𝑦

𝑝𝑥(𝑖) = σ
𝑗=1

𝑁𝑔 𝑃 𝑖, 𝑗 and 𝑝𝑦(𝑗) =

σ
𝑖=1

𝑁𝑔 𝑃 𝑖, 𝑗



Hyperparameter Tuning and Feature Selection

45

Start

Candidate 

hyperparameter set

Candidate features 

set

Train model

Test model and record 

per formance

Number of 

features 

equals 1?

Remove the least 

important feature

Change hyperparameter 

configuration

All hyperparameter 

configuration 

explored?

Stop

No

No

Yes

Yes

• Test different types of 

machine learning 

models at different 

feature combination.

• Goal here was to find 

the best fit model, 

while having the least 

number of features.



Features for CLS estimation modeling
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• Multispectral Imagery

• RDVI skewness

• NIR texture homogeneity (coefficient of 

variation)

• Hyperspectral Imagery

• MCARI2 skewness

• 721 nm texture homogeneity (coefficient of 

variation)

• 741 nm texture homogeneity (kurtosis)

• 761 nm texture dissimilarity (skewness)



Model performance
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𝑹𝟐𝑻𝒆𝒔𝒕 = 𝟎.𝟗𝟎

𝑹𝑴𝑺𝑬𝑻𝒆𝒔𝒕 = 𝟕.𝟏𝟖 %

𝑹𝟐𝑻𝒆𝒔𝒕 = 𝟎.𝟖𝟕

𝑹𝑴𝑺𝑬𝑻𝒆𝒔𝒕 = 𝟏𝟎. 𝟏%

• Random forest regressor model tested on 30% of the data.

• HSI estimations tended to underestimate at high values.

• MSI performed better than HSI.

Why does 
the model 

work



Feature Analysis

48

• RDVI skewness was the primary driving factor for model.

• Texture features, particularly homogeneity variation were the 

delineating factor for high DS.



Conclusions
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• UAS-based multispectral and hyperspectral imagery accurately estimated 

CLS severity, with 

• multispectral achieving R2 = 0.90, RMSE = 7.18%, and 

• hyperspectral achieving R2=0.87, RMSE = 10.1%

• RDVI skewness emerged as the primary driving feature for disease 

prediction, particularly effective for identifying low severity cases.

• Texture features provided added value in delineating plots with high 

disease severity, highlighting the benefit of integrating spatial metrics.



Outline
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Conclusions

• Developed an end-to-end methodology for non-invasive crop 

monitoring of table beets using UAS.

• Built models that perform well with limited data and minimal input 

features, reducing risk of overfitting and enhancing interpretability.

• Compared sensor configurations for both root yield estimation and 

disease severity, finding that simple multispectral systems offer 

competitive performance across use cases.
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Future Work

• Field collection perspective

• Acquire more diverse data across growth conditions, season, and varieties.

• Imaging perspective

• Evaluate performance impacts of varying spatial resolutions.

• Assess optimal image overlap needed to capture accurate structural information from 

UAS imagery.

• Modeling perspective

• Apply unsupervised learning to leverage unlabeled datasets.

• Investigate multi-task transfer learning to improve generalizability.
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Broader Impact

• The modeling framework developed is transferable to other crops, supporting 

broader applications in precision agriculture.

• Sensor performance comparisons provide guidance to practitioners on 

selecting the most effective sensor for their use case.

• All code and datasets have been made publicly available to support future 

research and reproducibility.
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Contributions
• Journals

1. Saif, M.S., Chancia, P., Murphy, S.P., Pethybridge, S. and van Aardt, J., “Advancing harvest table beet root yield estimation via unmanned aerial
systems (UAS) multi-modal sensing” (Under review).

2. Saif, M.S., Chancia, R., Sharma, P., Murphy, S.P., Pethybridge, S. and van Aardt, J., “Estimation of Cercospora Leaf Spot Disease Severity in Table
Beets from UAS Multispectral Images.” (Under review, second round in Computer and Electronics in Agriculture).

3. Saif, M.S., Chancia, R., Pethybridge, S., Murphy, S.P., Hassanzadeh, A. and van Aardt, J., “Forecasting Table Beet Root Yield Using Spectral and
Textural Features from Hyperspectral UAS Imagery.” Remote Sensing, 15(3), p.794, Jan 2023.

• Conference talks
1. Saif, M.S., Chancia, P., Murphy, S.P., Pethybridge, S. and van Aardt, J., “Exploring UAS imaging modalities for precision agriculture: predicting

table beet root yield and disease severity estimation using multispectral, hyperspectral, and LiDAR.” SPIE Defense + Commercial Sensing 2025,
Apr 2025.

2. Saif, M.S., Chancia, P., Murphy, S.P., Pethybridge, S. and van Aardt, J., “Assessing Multiseason Table Beet Root Yield from Unmanned Aerial
Systems.” AGU24, Dec 2024.

3. Saif, M.S., Chancia, R., Sharma, P., Murphy, S.P., Pethybridge, S. and van Aardt, J., “Agricultural Disease Management: Estimation of
Cercospora Leaf Spot Severity in Table Beets using UAS.” Stratus conference 2024, May 2024.

4. Saif, M.S., Chancia, R., Pethybridge, S., Murphy, S.P., Hassanzadeh, A. and van Aardt, J., 2023, May. “Predicting Table Beet Root Yield via UAS-
based Hyperspectral Imagery.” Stratus conference 2023,May 2023.
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We’re the world, We’re the Beets ……..
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• Illustrations generated using Sora
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